
Phase distribution and phase correlation of financial time series

Ming-Chya Wu,1,* Ming-Chang Huang,2 Hai-Chin Yu,3 and Thomas C. Chiang4

1Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
2Department of Physics, Chung-Yuan University, Chungli, Taiwan 32023

3Department of International Business, Chung-Yuan University, Chungli, Taiwan 32023
4Department of Finance, Drexel University, Philadelphia, Pennsylvania 19104, USA

�Received 22 July 2005; published 13 January 2006; publisher error corrected 18 January 2006�

The scaling, phase distribution, and phase correlation of financial time series are investigated based on the
Dow Jones Industry Average and NASDAQ 10-min intraday data for a period from 1 Aug. 1997 to 31 Dec.
2003. The returns of the two indices are shown to have nice scaling behaviors and belong to stable distributions
according to the criterion of Lévy’s � stable distribution condition. An approach catching characteristic fea-
tures of financial time series based on the concept of instantaneous phase is further proposed to study the phase
distribution and correlation. Analysis of the phase distribution concludes that return time series fall into a class
which is different from other nonstationary time series. The correlation between returns of the two indices
probed by the distribution of phase difference indicates that there was a remarkable change of trading activities
after the event of the 9/11 attack, and this change persisted in later trading activities.
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I. INTRODUCTION

Financial markets are complex systems consisting of a
large number of traders interacting with one another in the
market and reacting to external information to determine the
best price for a given item. Previous studies of financial sys-
tems are usually based on fundamental statistics on return of
index and tend to address issues on drawing trading strate-
gies for traders and investors. With the power of new algo-
rithms for statistical analysis, some previous studies have
provided rich information for such purposes. For example,
many existing works in the literature disclose that high-
frequency data of financial assets would show a heavy tail.
Zhou indicated that the heavy tail of financial time series is
mostly caused by the heteroscedasticity of the time series
�1�. Furthermore, the estimates of intraday volatility basi-
cally reveal a strong seasonal pattern.

However, previous studies have also suffered from a lim-
ited scope provided by the statistics of conventional deriva-
tives from returns. As a result, cross-disciplinary studies on
financial systems have attracted much attention in recent de-
cades �2–7�. With the help of ideas from other fields, there
have been significant achievements in economy science. One
of great achievements has been applications of statistical me-
chanics to economic systems, which was later referred to
econophysics �2�. Some correspondences between quantities
in economic systems and physical systems were found and
suggest fundamental concepts behind them. For example, it
was found that there is a two-phase behavior of financial
markets which suggests that there is a link between the dy-
namics of a human system with many interacting participants
and the ubiquitous phenomenon of phase transitions that oc-
cur in physical systems with many interacting units �8�. The
scaling analysis in statistical mechanics is shown to be ap-

plicable in the studies of market systems �2,3,9�.
There are also developments in the analysis of financial

time series in methodology �4,5,10�. For example, the
method of random matrix theory has been developed to study
the statistical structure of multivariate time series �4–6� and
has given remarkable agreement between theoretical predic-
tion and empirical data concerning the density of eigenvalues
associated with the time series of the different stocks of the
S&P500 �4,6�. Furthermore, the wavelet transform modulus
maximum approach has been available in the last ten years
�11� and has been applied to study nonstationary time series
such as physiologic systems �12–15� and economic systems
�10�. For example, Ohashi et al. �10� used the analysis of
asymmetrical singularities to analyze the human heartbeat
and daily stock price records, and claimed that the method
can enhance understanding of the mechanisms determining
the systems’ dynamics �10�. However, the wavelet analysis
has difficulty because of its nonadaptive nature, so that once
the basic wavelet is selected, it is used to analyze all the data.
In addition, some wavelets are Fourier based, suffering the
shortcoming of Fourier spectral analysis for only giving a
physical meaningful interpretation to linear phenomena �16�.
Nevertheless, financial time series are nonlinear, and the
analyses by these approach may lose information on nonlin-
ear properties.

In this paper, in light of the above situations, we intend to
develop an approach to study financial time series. The main
issues to be addressed are scaling analysis and the phase
distribution of financial time series and phase correlation be-
tween them. We use the Dow Jones Industrial Average 30
�DJIA� and NASDAQ stock indices for the study. The reason
to choose these two indices stems from the fact that the
former represents the most established and renowned firms
in the U.S. market, while the latter consists of high-tech and
growth firms. These two indices thus represent not only the
core of the U.S. economy, but also facilitate the menu for
investor’s choice in the mean-variance plan. A successful
empirical investigation emerging from this study is bound to*Electronic address: mcwu@phys.sinica.edu.tw
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provide a solid foundation to advance our empirical analyses
to a broader spectrum of asset behavior.

We first analyze scaling behaviors of return time series to
probe stability of their distributions. Following the scheme
proposed in Refs. �2,9�, scaling analyses are performed on
the returns of the DJIA and NASDAQ with various time
sampling intervals. The stock returns of both the DJIA and
NASDAQ are shown to have nice scaling behaviors and be-
long to stable distributions according to the criterion of
Lévy’s � stable distribution condition �3�.

We further suggest an approach to examine properties of
financial time series. The Hilbert-Huang time signal analysis
method �16� is used to define and evaluate instantaneous
phase of financial time series. This method was first dis-
closed by Huang et al. for the studies of nonstationary and
nonlinear time series �16�. The key part of the method is the
empirical mode decomposition �EMD� method with which
any complicated data set can be decomposed into a finite and
often small number of intrinsic mode functions �IMF’s� that
admit well-behaved Hilbert transforms �16�. Here, based on
this method we analyze the nonstationary time series of re-
turn to extract characteristic structures of empirical data and
evaluate phase distributions of certain IMF’s. Then, the re-
sultant structures can be further analyzed. The results we
thus obtain indicate that the return time series fall into a class
which is different from other time series.

We also measure the correlation between DJIA and NAS-
DAQ indices by calculating the distribution of phase differ-
ence in return time series. Our results impressively show that
there is a remarkable change of trading activities implied by
phase correlation after the event of the 9/11 attack. For mod-
ern stock markets with information transmitted rapidly, our
findings might be a useful reference for market investors and
policy decision makers �17�.

This paper is organized as follows. In Sec. II, we briefly
illustrate the data source used in this paper. In Sec. III, we
give basic definitions of quantities used in sequential analy-
ses and explore general features presented by these quanti-
ties. Then, we start to perform scaling analysis of returns in
Sec. IV. In Sec. V, we suggest our approach for catching
characteristic features of financial time series. The Hilbert-
Huang method is used to decompose return time series and
calculate instantaneous phases accordingly. Correlations be-
tween two financial time series are investigated and dis-
cussed in Sec. VI. Finally, we summarize our results in Sec.
VII.

II. DATA

The empirical analyses are based on DJIA and NASDAQ
from the Trade And Quotation �TAQ� database and the Ya-
hoo database �18�. The TAQ data files contain continuously
recorded information on the trades and quotations for the
securities listed on the NYSE, AMEX, and NASDAQ. The
DJIA stocks are the most actively traded securities; the capi-
tal size of the firms in the DJIA also helps to ensure a high
degree of liquidity. Alternatively, the stocks listing in NAS-
DAQ exchanges characterize high-tech growing firms, yet
with more price volatility. On the basis of these two distin-
guished characteristics of stock returns, we are able to derive
some empirical regularity on diverse portfolios.

The intraday 10-min scale values for both the DJIA and
NASDAQ spanning from 1 Aug. 1997 through 31 Dec. 2003
cover the whole six-and-half hours trading starting from 9:30
to 15:50 EST. The overnight �or over weekend� period con-
stitutes an unusual time period as it involves a much longer
time interval than 10 min. Therefore, the value of index at
very open price will be distorted. Here, unlike Main and
Adam �19�, we do not omit the very close-to-open returns.
Rather, we keep them in the data to conduct sensitivity
analysis. After elimination of the omitting days for which all
the 10-min values of the index were not available, we obtain
a total of 1543 trading days with 60 177 observations of
10-min index values. Following the analyses by Andersen
and Bollerslev �20�, we constructed 10-min returns with the
daily transaction records extending from 9:30 to 15:50 EST,
a total of 39 10-min returns for each day. The 10-min horizon
is short enough that the accuracy of the continuous records
of realized returns and volatility work well, and it is long
enough that the confounding influences from market micro-
structure frictions can be negligible.

Figures 1�a� and 1�b� are time series paths of the DJIA
and NASDAQ indices sampled by 10 min.

III. TIME SERIES OF RETURNS

We first define basic quantities used in this paper and
present general features revealed from the data. The index
values are denoted by a time series Y�t�, and the time series
of logarithmic returns of an asset priced at Y�t� over a time
scale � is defined as

FIG. 1. �Color online� High-frequency �a�
DJIA and �b� NASDAQ index date sampled by
10 min from 1 Aug. 1997 to 31 Dec. 2003.
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R��t� = ln� Y�t�
Y�t − ��� , �1�

where � is a multiple of the primary time sampling unit
�t�=10 min�. Since the time scale � �in unit of �t� is a pa-
rameter used to sample time series of returns, we can take
different � for R��t� to explore the behaviors of the returns
with intraday and interday frequencies. Because there are 39
sampling data in each trading day, we take different � values
being factors of 390 to avoid ambiguity in time sampling
intervals involving interday quantities. Here we take �
=10,30,130,390 min to sample the time series of R��t� for
the intraday data and �=1,2 ,3 ,4 days for daily data, and the
results for DJIA are shown in Figs. 2�a� and 2�b�, respec-
tively. These figures essentially provide a picture that ampli-
tudes of these time series are, in general, proportional to
sample time scales. Therefore, based on Eq. �1�, we define
the normalized logarithmic returns as �3�

r��t� =
R��t� − �R��t��

	�R�
2�t�� − �R��t��2

, �2�

where the expectation values denoted by �·� are taken over
the entire time period under consideration.

Be aware of the fact that the analysis based on the as-
sumption that the tick-by-tick data are linear may lead to
incorrect conclusions if the underlying process of financial
time series is multiplicative �21�. We will use the returns

defined in Eq. �1� instead of the index changes Y�t�−Y�t
−��, used in Ref. �9�, for the scaling analysis in the next
section.

We further define the probability distribution �or more
precisely, probability density function� P as the normalized
distribution of a measure �, which satisfies



−�

�

P���d� = 1, �3�

where the measure � can be R�, r�, phase, or phase difference
defined in the later discussions.

The probability distributions of the normalized returns
r��t� with different time scale � for the DJIA are shown in
Fig. 3. Here we have separated intraday data from interday
data in the analyses and also compare the interday data with
annual periodicity.

In Fig. 3�a�, probability distributions of the normalized
returns for intraday data with different time sampling inter-
vals �=10,30,130,390 min are shown. Figure 3�b� is a com-
parison of the probability distributions of normalized returns
for time sampling intervals from 10 min to 1 week. Probabil-
ity distributions of the normalized returns with a time sam-
pling interval of 10 min over different periods of the DJIA
are shown in Fig. 3�c�. Note that fluctuation strengths of
probability distributions for different time scales are associ-
ated with the number of data points, and here the longer the
time scale is, the fewer is the number of data points. From
these figures, it is clear that P�r�� is independent of time
sampling intervals and periods. In other words, with a proper

FIG. 2. �Color online� Time series of logarithmic returns R��t� of �a� the intraday DJIA index sampled by 10, 30, 130, and 390 min and
�b� the interday DJIA index sampled by 1, 2, 3, and 4 days.
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self-normalized factor, time series with different time scales
can be view as a single one. The same phenomenon is appli-
cable to r��t� for NASDAQ returns, and we shall not repeat
the discussion to save space. The existence of scaling behav-
ior is then clear.

It was reported that the probability distributions of the
normalized returns can be well described by the so-called
double-exponential law �also known as the Laplace distribu-
tion� P�r���exp�−�r� � /��, where � is a constant �22,23�.
The double-exponential distribution of return at not-too-long
times t is a universal, ubiquitous feature of financial time
series and was observed for different countries, stock-market
indices, and individual stocks �23�. According to Ref. �23�,
the central part of the curves shown in Fig. 3 can be fitted by
the scaling form using a Bessel function, where 99% of prob-
ability reside and statistics is good, followed by power laws
in the far tails, where data statistics is often poor. These
features are well caught by the Heston stochastic process

�24�. For detailed discussions of the exponential-to-Gaussian
crossover see Ref. �23�.

IV. SCALING ANALYSIS

According to scaling ansatz, a scaling theory for a system
can be established provided that there is an extensive quan-
tity in the system. In Fig. 3, time series with various sample
time scales can be rescaled by a self-normalized factor im-
plicitly depending on the corresponding time scales. There-
fore, for financial time series, the extensive quantity is the
time sampling interval �. An important issue we should no-
tice here is the problem of data treatment in mixing intraday
data and interday data. Since there are ambiguities in this
issue, we perform scaling analysis both on intraday data
�case �A�� and mixture of intraday and interday data �case
�B��.

For case �A�, data with certain time scale � are sampled
with fixed time sampling intervals of trading time from in-

FIG. 3. �Color online� Probability distributions P�r�� of normalized returns of the DJIA, r��t�, �a� for intraday data with time sampling
intervals of multiples of 10 min, �b� with a time sampling interval from 10 min to 1 week, and �c� with a time sampling interval of 10 min
for different periods ranging from 1997 to 2003.
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traday data. In the case of a trading time is less than
1950 min in a week, the time interval of 1950 min may
spread more than 1 week. In this analysis, there is no ambi-
guity in time sampling intervals, but may has uncertainty in
mixtures of interday data.

For case �B�, time sampling intervals are 10, 30, and
130 min for intraday data, 1 day for daily data, and 1 week
for weekly data. In this analysis, the time sampling intervals
of trading time is not fixed.

We first examine case �A�. Figure 4�a� shows the prob-
ability distributions P�R�� of the intraday frequency varia-
tions of the DJIA with R��t� observed at five different time
intervals �, ranging from 10 to 1950 min. In contrast with
those for normalized returns shown in Fig. 3, the probability
density functions for returns R��t� with different time sam-
pling intervals do not converge to a single curve. However,
according to Refs. �9,2�, it is possible to make differentP�R��
converge to a single curve by performing a scaling analysis.

The simplest method is that we first shift these curves to
make their maxima overlap and then rescale time intervals if
necessary. To achieve this, we plot P�R�=0� with respect to
the time sampling intervals � in Fig. 4�b�. The distributions
of P�R�=0� with respect to � plotted in logarithmic scale are
linear. Accordingly, we take P�R�=0� with respect to � from
�=10 minutes to 780 min. The best fitting straight line is
also plotted in Fig. 4�b�, and it obeys

log10P�R� = 0� = C −
1

�
log10� , �4�

where C is a constant. By measuring the slope of the fitting
straight line, we have �=1.84±0.03 which is larger than 1.4
in Ref. �9�, but is consistent with ��2, the condition for
stable Lévy distributions �3�. We then rescale returns R��t�
and the probability density function P�R�� according to �9�

FIG. 4. �Color online� �a� Probability distributions P�R�� of the return variations of the DJIA, R��t�, for interday data observed at time
intervals �. �b� Probability of return variation P(R��t�=0) as a function of the time sampling intervals �. The slope of the best-fit straight line
is −0.54±0.01. �c� Scaled plot of the probability distributions shown in �a� with �=1.84.
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Rs,� =
R�

�1/� , �5�

Ps�Rs,�� =
P�R��
�−1/� . �6�

Figure 4�c� shows a scaled plot of the probability distribu-
tions with �=1.84. Probability distributions of time scales
with properly scaled can coincide with each other very well.

Next, we examine case �B�. We perform the same analysis
on the intraday data and interday data �daily and weekly�,
and the results are shown in Fig. 5. The value of � is �
=1.82±0.03, which is about 1.2% smaller than that for intra-
day data. The small difference shall be due to mixture and
nonmixture of intraday and interday data. A more rigorous
examination of the difference can be investigated by the in-
troduction of an effective overnight time lag such as the
analysis done in Ref. �23�. According to our analyses herein,
there is no significant difference between cases �A� and �B�.

We will then focus on the analysis of intraday data hereinaf-
ter.

For NASDAQ index data, we perform the same analysis
of case �A� and the results are shown in Fig. 6. The value of
� is �=1.75±0.03, which is about 4.9% smaller than that of
intraday data of DJIA returns and is also smaller than 2,
which indicates returns of the NASDAQ index belong to
stable Lévy distributions as well. Furthermore, the scaling
behavior is also well described by �=1.75 as shown in Fig.
6�c�.

Here we note that if the index change Y�t�−Y�t−�� is
used for the scaling analysis, we get �=1.71±0.05 �case �A��
and 1.77±0.08 �case �B�� for the DJIA and �=1.51±0.04 for
NASDAQ. The significant difference of the value � for
NASDAQ is due to the fact that during the considered pe-
riod, changes of the NASDAQ index changed significantly
such that the assumption of tick-by-tick data is linear is in-
correct. This fact demonstrates the conclusion of Ref. �21�
that returns should be used instead of index change for the
scaling analysis. Furthermore, Eqs. �5� and �6� can be sum-

FIG. 5. �Color online� �a� Probability distributions P�R�� of the return variations of the DJIA, R��t�, for interday and interday data
observed at time intervals �. �b� Probability of return variation P(R��t�=0) as a function of the time sampling intervals �. The slope of the
best-fit straight line is −0.55±0.01. �c� Scaled plot of the probability distributions shown in �a� with �=1.82.
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marized as P�R��� f�R� /�b�, where b=1/�. According to
our analysis, b=0.54 and 0.55 for the DJIA and b=0.57 for
NASDAQ, which are close to the value 0.5 found in Ref.
�23�, in which the function f�R� /�b� is considered as the
exponential function in short-time limit and the Gaussian
function in long-time limit.

V. PROBABILITY DISTRIBUTION OF THE
INSTANTANEOUS PHASE

The analysis of scaling in Sec. IV is for a survey of sta-
tistical property of financial time series. In this section, we
intend to investigate other nature of financial time series.
However, as shown in Fig. 1, time series of index are in
general nonlinear and nonstationary. The conventional
method for nonstationary time series analysis based on Fou-
rier transform, such as spectrum analysis, wavelet analysis,
etc., may suffer from the limitation of linearity. This finding
has been discussed elsewhere, and further review of the ad-

vantages, limits, and shortcomings of the existing time series
analysis methods can be found in Ref. �16�. In view of these,
here we suggest an approach which is based on the concept
that an instantaneous phase can catch the characteristic fea-
tures of financial time series. The idea originates from the
fact that phases of a time series usually contain rich informa-
tion about the structures of the time series. The proposal will
be very useful if such information can be extracted faithfully
in further analyses. Therefore, to achieve this, we introduce
the Hilbert-Huang time signal analysis method �16�, which is
suitable for the analysis of nonstationary time series, to de-
fine and calculate the instantaneous phase.

The Hilbert-Huang method of time signal analysis con-
sists of the so-called empirical mode decomposition and the
Hilbert spectral analysis. The EMD method is developed
from the assumption that any time series consists of simple
intrinsic modes of oscillation, and the essence of the method
is to identify the intrinsic oscillatory modes by their charac-
teristic time scales in the data empirically and then decom-
pose the data accordingly �16�. This is achieved by sifting

FIG. 6. �Color online� �a� Probability distributions P�R�� of the return variations of NASDAQ, R��t�, for interday data observed at time
intervals �. �b� Probability of return variations P(R��t�=0) of as a function of the time sampling intervals �. The slope of the best-fit straight
line is −0.57±0.01. �c� Scaled plot of the probability distributions shown in �a� with �=1.75.
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data to generate IMF’s. The IMF’s introduced by EMD are a
set of well-behaved intrinsic modes, and these functions sat-
isfy the conditions that they are symmetric with respect to
the local zero mean and have the same numbers of zero
crossings and extremes. Therefore, the Hilbert transform can
be directly used to calculate the instantaneous phase after the
decomposition processes.

The algorithm to create IMF’s in EMD is rather elegant,
and it mainly consists of two steps. First, the local extremes
in the return time series data, R��t�, are identified. Then, all
the local maxima are connected by a cubic spline line U�t�,
which forms the upper envelope of the time series. At the
same time, the same procedure is applied for the local
minima to produce the lower envelope, L�t�. Both envelopes
will cover all the original time series. The mean of upper
envelope and lower envelope, m1�t�, given by

m1�t� =
U�t� + L�t�

2
, �7�

is a running mean. We then subtract the running mean m1�t�,
from the original time series R��t�, and get the first compo-
nent h1�t�,

R��t� − m1�t� = h1�t� . �8�

The resulting component h1�t� is an IMF if it satisfies the
following conditions: �i� h1�t� is free of riding waves. �ii� It
displays symmetry of the upper and lower envelopes with
respect to zero. �iii� The numbers of zero crossing and ex-
tremes are the same or only differ by 1. If h1�t� is not an
IMF, the sifting process has to be repeated as many times as
is required to reduce the extracted signal to an IMF. In the
subsequent steps of sifting process, h1�t� is treated as the
data,

h1�t� − m11�t� = h11�t� . �9�

Again, if the function h11�t� does not yet satisfy criteria
�i�–�iii�, the first sifting process continues up to k times until
some acceptable tolerance is reached and

h1�k−1��t� − m1k�t� = h1k�t� . �10�

If the resulting time series is the first IMF, then it is desig-
nated as c1=h1k�t�. The first IMF component from the data
contains the highest oscillatory frequency found in the origi-
nal data R��t�.

Subsequently, the first IMF is subtracted from the original
data and the difference r1, given by

R��t� − c1�t� = r1�t� , �11�

is a residue. The residue r1�t� is taken as if it were the origi-
nal data, and we apply to it again the sifting process. Follow-
ing the above procedures, the process of finding more intrin-
sic modes ci continues until the last mode is found. The final
residue will be a constant or a monotonic function which
represents the general trend of the time series data. Finally,
we get

R��t� = 

i=1

n

ci�t� + rn�t� , �12�

ri−1�t� − ci�t� = ri�t� , �13�

where rn is a residue. In general, rn is a constant or a mono-
tonic function which represents the general trend of the time
series.

To perform the EMD method on a financial time series,
one may or may not impose an intermittency as an additional
condition in the sifting process, depending on the nature of
the financial time series under consideration. The intermit-
tency can be considered as a window used to eliminate the
end effects and to facilitate computation. However, a charac-
teristic intermittency in trading time of a stock market may
be indefinite. In particular, for a truly nonstationary process
like index �return� time series, there is no time scale to guide
the choice of window size. Therefore, here we do not impose
definite intermittencies in the sifting process. Hence, in the
sifting process, the structures of the time series with primary
time sampling intervals are closely preserved in the first
mode.

We take intraday returns R��t� with time sampling interval
of 10 min as the primary time series and then perform EMD
to decompose R��t� into 14 IMF’s. The results are shown in
Fig. 7�a�, in which only the first three IMF’s are shown. The
physical meanings of the decomposition are clear from the
features of IMF’s. Let us first compare time series R��t� and
IMF’s c1 and c2 in Fig. 7�a�. According to Eqs. �12� and �13�,
R��t� consists of 14 IMF’s and each IMF is independent from
the others. The term “independent” here is in some sense
equivalent to the term “orthogonal” in the theory of finite-
dimensional vector space. In other words, each IMF cannot
be represented by other IMF’s decomposed from the same
primary time series. The main difference between IMF’s c1
and c2 is the intermittencies they own. IMF c1 is the first
mode separated from R��t� after the sifting process, and it has
the highest frequency among 14 IMF’s. Since no criterion is
imposed on the intermittency, there is no specified relation
between the intermittencies of c1 and c2. Furthermore, if one
IMF dominantly catches characteristic features of R��t�, then
its contribution is distinguishable in an observation like Fig.
7�a�. It is obvious that c1 catches the main structures of R��t�
since the time series of R��t� is mainly characterized by its
highest-frequency component. However, we should note that
this is case by case and the conclusion may not be applicable
to other time series.

In our analysis, it is very important to note that IMF c1 is
not equal to time series R��t�. If we evaluate some quantities
specifically defined for R��t� from cr’s, the results may be
quite different. Actually, it is not reasonable to copy all the
fundamental statistics primarily performed on return R��t� to
IMF’s.

After IMF’s have been obtained from the EMD method,
one can further calculate instantaneous phases of IMF’s by
applying the Hilbert transform to each IMF component—say,
the rth component. The procedures of the Hilbert transform
consist of calculation of the conjugate pair of cr�t�—i.e.,
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yr�t� =
1

�
P


−�

� cr�t��
t − t�

dt�, �14�

where “P” indicates the Cauchy principal value. With this
definition, the two functions cr�t� and yr�t� forming a com-
plex conjugate pair define an analytic signal zr�t�:

zr�t� = cr�t� + iyr�t� , �15�

which can also be expressed as

zr�t� = Ar�t�ei	r�t�, �16�

with amplitude Ar�t� and the phase 	r�t� defined by

Ar�t� = �cr
2�t� + yr

2�t��1/2, �17�

	r�t� = arctan� yr�t�
cr�t�

� . �18�

Then, we can calculate the instantaneous phase according to
Eqs. �14� and �18�. The amplitudes and phases of the IMF’s
in Fig. 7�a� calculated by the Hilbert transform are shown in
Fig. 7�b�. Note that the magnitude of the amplitude is sig-
nificantly smaller than the phase. To show both amplitude
and phase in the same figure, here we have adjusted the
magnitude of amplitude by multiplying by 100 to make it fit
to the same scale for phase.

Similarly, we can perform EMD on the time series with
time sampling interval of 30, 130, and 390 min and the phase
distributions are shown in Figs. 8�a�–8�c�, respectively. For

FIG. 7. �Color online� �a� Intraday DJIA index and the corresponding return sampled by10 min and the first three IMF’s; �b� amplitude
and phase variations of the IMF’s in �a�, in which the amplitude have been adjusted by multiplying 100; and �c� probability distribution of
phases.
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the time series with time sampling interval of 1 day and 1
week, similar patterns can be obtained. We find that except
for the first IMF’s of these time series, the phases of other
IMF’s are randomly distributed and have equal probabilities
for all possible phases—i.e., −��	��. Note that for time
series with too low frequency such as weekly, the number of

sampling data points are too few to exhibit this feature ex-
plicitly. Figures 9�a� and 9�b� show the amplitude and phase
distributions of the first IMF’s of these time series, respec-
tively. The probability density functions of amplitudes for
the first IMF’s are general Boltzmann distributions. Among
these, the phase distribution is quite interesting. Most phases
of the IMF’s locate at −0.5��	�0.5�. For clarity, we lo-
cate the index with instantaneous phase −0.5��	�0.5� on
the time series of the DJIA index with red spots, and the
results are shown in Fig. 9�c�. The patterns of red spots do
not have particular rules and are nonuniform distributed. The
clustered distribution of phase originates from the abruptly
changing behaviors of the index time series, which is a na-
ture of time series with intermittency close to the sample
time scale �. We find that these behaviors exist in all sample
time scale �time sampling intervals of multiples of 10 min�
of intraday data and are believed to persist in interday time
scales �daily, weekly, and even lower frequencies�. From an-
other point of view, the behaviors of abruptly change imply
nonpredictable and stochastic features of the index. These
features may be understood by the stochastic volatility model
which is a log-Brownian model with random diffusion coef-
ficients �25,26�. In particular, it has been reported that essen-
tial features of stock price dynamics can be well modeled by
a number of stochastic volatility models �27�.

We further preform analysis on the NASDAQ index time
series under the same framework, and the results are shown
in Fig. 10. Both the probability distributions of the first
IMF’s of returns of DJIA and NASDAQ indices are Boltz-
mann distributions, except for a difference in scale. It is re-
markable that the distributions of phases are the same, which
implies that it is a characteristic behavior of this kind of time
series. As mentioned above, the behavior indicates nonpre-
dictable features of index time series and is very different
from regular signals or pseudoregular signals. For instance, a
typical time series of respiratory cycles �28� is shown in Fig.
11�a�. In general, the respiratory cycle is not a regular time
series but is disturbed by body actions and noises. The third
IMF c3 obtained by EMD catches the main structures of this
time series �29�, and the corresponding probability distribu-
tion of amplitudes is shown in Fig. 11�b�. We compare the
probability distributions of phases for returns of DJIA and
NASDAQ indices, foreign exchange �30�, and respiratory
time series in Fig. 11�c�. From this figure, that return time
series and respiratory time series belong to different classes
is quite apparent. The same analysis can also be performed
on other time series, such as temperature variation, popula-
tion, etc. The investigations will be reported elsewhere �31�.

The different patterns of phase distributions for the return
time series and the respiratory time series can be understood
from the mechanisms and the sampling rate of the processes.
It is recognized that financial markets belong to the self-
organized system �32�, which shows a nonequilibrium steady
state of an extended system with a steady drive, but irregular
burst like relaxations �33�. The financial markets thus can be
modeled by a random process with stochastic volatility.
There is no sinusoidlike cyclic rhythm existing in the time
scale catching characteristic structures of high-frequency
time series and can be used to define as a characteristic time
scale. The definition of returns then makes the wave form of

FIG. 8. �Color online� Probability distributions of phases of the
first three IMF’s for intraday returns of the DJIA index sampled by
�a� 30 min, �b� 130 min, and �c� 390 min.
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FIG. 9. �Color online� Probability distributions of �a� amplitudes
and �b� phases for the first IMF’s of the returns of the DJIA index
sampled by 10, 30, 130, 390 min; �c� intraday DJIA index sampled
by 10 min and with red spots indicating the instantaneous phase
−0.5��	�0.5�.

FIG. 10. �Color online� Probability distributions of �a� ampli-
tudes and �b� phases for the first IMF’s of the returns of the NAS-
DAQ index sampled by 10, 30, 130, 390 min; �c� intraday NAS-
DAQ index sampled by 10 min and with red spots indicating the
instantaneous phase −0.5��	�0.5�.
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the corresponding time series in a zigzag fashion. As a result,
the intermittency of return time series always has the order of
the sampling time intervals. In contrast to the financial time
series, the respiratory time series is a measurement of respi-
ratory cycles which are controlled by neural and physiologi-
cal systems, and are also influenced by mechanical effects.
The respiratory signals may represent measures of the vol-
ume of expansion of ribcage and can be described by sinu-
soidal wave forms with time-varying amplitude and fre-
quency �29�. Since respiration always completes a cycle in a
definite time period, the characteristic time scale can be de-
fined in this system. For example, each respiratory cycle
takes 2–6 sec depending on the physiological situations and
age, and a characteristic time scale can then be defined ac-
cordingly. Therefore, the time series of respiratory cycle can
be sampled by sufficient short-time sampling intervals such

that the structures of the wave form can be precisely caught.
It follows that the calculation of phase distribution for the
wave form leads to a homogeneous pattern in a range from
−� to �.

VI. CORRELATION BETWEEN THE DJIA AND NASDAQ
INDICES

At first glance at Fig. 1, the DJIA and NASDAQ indices
seem to have explicit correlations in several epoches. For
example, two indices decline in August and September of
1998 and in March of 2001. Two indices abruptly decline in
September of 2001 due to the accident of 9/11 attack. These
big changes are in-phase, and there are also out-of-phase
changes, such as those in the period from February to March

FIG. 11. �Color online� �a� Typical human respiratory time series �28� and the third IMF, which catches the main structures and the
corresponding amplitude and phase variations; �b� probability distribution of amplitudes; and �c� probability distributions of phases for the
first IMF’s of the returns for the DJIA and NASDAQ indices sampled by 10 min, daily returns of foreign exchange �30�, and the third IMF
of the respiratory time series in �a�.
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of 2000. In other periods, we can also find similar behaviors
in shorter time scales.

To investigate the correlative behaviors set forth, here we
also apply the Hilbert-Huang method to calculate the instan-
taneous phases of several epoches of the index and return
time series of the DJIA and NASDAQ indices. To be statis-
tical meaningful, each epoch will have more than 3000 sam-
pling points. Here we further define phase differences of the
first IMF’s for different indices. Take the DJIA as a reference
and define the phase difference �	r as

�	r = 	r�NASDAQ� − 	r�DJIA� , �19�

and then calculate the probability distributions for various
periods, in units of years. The results are shown in Figs.

12�a� and 12�b� for index time series and return time series,
respectively. The skewness and kurtosis of the corresponding
statistics are summarized in Table I. It is interestingly that, in
the year 2003, both Figs. 12�a� and 12�b� have sharp peaks
around zero of the phase difference compared with other
periods, indicating that the relation of phases between two
indices is closer to each other in the year 2003. This implies
more correlative behaviors between two indices in the year
2003. Suppose this is a general trend; the stronger correlative
behaviors may in some sense provide implications to market
investors in buying and selling trading strategy �17�.

Furthermore, in spite of the small differences between the
statistics based on the index �Fig. 12�a�� and return �Fig.
12�b�� in Table I, a general feature shall be the negative value
of skewness for the years 2001 and 2002 which indicates that

FIG. 12. �Color online� Probability distributions of phase differences between the first IMF’s of �a� DJIA and NASDAQ indices and �b�
returns of DJIA and NASDAQ indices for different periods ranging from 1997 to 2003, and �c� returns of DJIA and NASDAQ indices for
the years 1998–2002 and for certain periods and events.
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the peaks of distributions are deviate from zero and are
slightly shifted to a negative domain. This implies that the
phase of the DJIA is ahead of NASDAQ on average for the
years 2001 and 2002. In other words, trading activities in the
DJIA have an affect on NASDAQ more than NASDAQ has
an affect on the DJIA. However, in other periods, trading
activities of NASDAQ have an affect on the DJIA more than
the DJIA has an affect on NASDAQ. This seems to be natu-
ral, since the DJIA is more stable and mature than NASDAQ
in composition and the stocks in NASDAQ are usually more
active than those in the DJIA. Consequently, in the years
2001 and 2002 in which stock markets were influenced by
the event of the 9/11 attack, the performance of mutual
stocks of the DJIA greatly affected those of NASDAQ. In
other periods such as the years 1998, 1999, and 2003, active
stocks in NASDAQ then affected the environment of the
stocks in the DJIA.

We further investigate distributions of phase differences
for certain epoches and events. Figure 12�c� shows the prob-
ability distributions of phase differences between the first
IMF’s of returns of two indices over the years 1998–2002
and the first half year of 1999 �indicated by 1999a�, the first
half year of 2000 �indicated by 2000a�, the last half years of
2001 and 2002 �indicated by 2001b and 2002b, respectively�,
and the whole year of 2003. We find that there is a remark-
able change in the behavior of trading activities both in the
DJIA and NASDAQ since the event of the 9/11 attack. More
specifically, Fig. 12�c� and kurtosis statistics in Table I show
that there were more correlative activities after 9/11 such that
the distribution functions of 2001b and 2002b were quite
different from those before 9/11. Note that there was a simi-
lar spectrum in the year 2003, which implies that the sce-
nario persisted in later trading activities. This may be inter-
preted by faster communications and stronger event
dependence after 9/11 in stock markets. In other words, the
behaviors of the two indices became more correlative due to
influences from common factors, such as news reports and
events, systemic risk, macroeconomic announcement, and
federal government policy. As a result, investors had similar
trading strategies during the anniversary of 9/11 in the year
2002 under these influences.

VII. CONCLUSIONS

In conclusion, we have investigated the scaling analysis,
phase distribution, and phase correlation of DJIA and NAS-
DAQ indices based on high-frequency intraday data.

A scaling analysis was performed both on DJIA and NAS-
DAQ returns. For the DJIA index, the values of � are 1.84
and 1.82 for intraday and a mixture of intraday and interday
cases, respectively. The small difference is due to a mixture
and nonmixture of intraday and interday data within weekly
frequency. Therefore, there is no remarkable difference be-
tween intraday and interday time sampling schemes for those
with sampling frequency higher than weekly. For NASDAQ
returns, the value of � for intraday data is 1.75, which is
slightly smaller than that for DJIA returns. However, both
DJIA and NASDAQ returns satisfy the stable Lévy distribu-
tions with ��2 �3�. The analysis of scaling also show that
the two returns have nice scaling behaviors with respect to
various time scales within a truncated time scale, which is
consistent with the existing literature �9,21,23�.

We further employed the Hilbert-Huang method of time
signal analysis to define the instantaneous phase to catch
characteristic features of index and return time series. The
EMD method was used to decompose return time series into
several IMF’s, and the Hilbert transform was used to calcu-
late the instantaneous phase of the first three IMF’s accord-
ingly. We find that except for the first IMF’s of these time
series which have phases mainly distributed within a range
of −0.5��	�0.5�, the phases of other IMF’s are randomly
distributed and have equal probabilities for all possible
phases. This behavior exists in all sample time scales �time
sampling intervals of multiples of 10 min� of intraday data
and interday data less than the weekly frequency. We expect
that the same behavior also exists on a larger time scale. The
phase distributions corresponding to abruptly changing be-
haviors indicate nonpredictable and stochastic features of the
indexes. Furthermore, our results show explicitly that the
phase spectrum of return time series falls into a class differ-
ent from other signals, such as a time series of human respi-
ration.

The investigations of correlations between DJIA and
NASDAQ indices by the phase difference for various periods

TABLE I. Skewness and kurtosis of the phases differences between the first IMF’s of �a� DJIA and
NASDAQ indices, and �b�, �c� returns of DJIA and NASDAQ indices, for certain periods and events. The
corresponding distributions are, respectively, shown in Figs. 12�a�–12�c�.

1997 1998 1999 2000 2001 2002 2003

�a� Skewness 0.006 0.072 0.101 0.067 −0.028 −0.034 0.042

Kurtosis 0.888 0.653 0.567 0.669 1.274 0.738 1.834

1997 1998 1999 2000 2001 2002 2003

�b� Skewness −0.004 0.079 0.069 0.115 −0.025 0.003 0.026

Kurtosis 0.907 0.843 0.728 0.779 1.326 0.934 1.990

1998-2002 1999a 2000a 2001b 2002b 2003

�c� Skewness 0.050 0.097 0.133 −0.050 −0.001 0.026

Kurtosis 0.903 0.776 0.848 1.556 2.104 1.990
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and epoches show a remarkable picture of trading activities.
We find that the phases of two index and return time series
became closer in the year 2003 than in earlier years, and the
phase of return time series for the DJIA index was ahead of
that for the NASDAQ index in the years 2001 and 2002 on
average. In other words, trading activities in the DJIA influ-
enced NASDAQ more than NASDAQ influenced the DJIA
in this period. This phenomenon was explained by the fact
that the DJIA is more stable and mature than NASDAQ in
composition, and the stocks in NASDAQ are usually more
active than those in the DJIA. Consequently, in the years
2001 and 2002 in which stock markets are influenced by the
event of the 9/11 attack, the performance of mutual stocks of
the DJIA affected much those of NASDAQ. In other periods
such as the years 1998, 1999, and 2003, active stocks in
NASDAQ then affected the environment of the stocks in the
DJIA.

Further, the phase distribution between two indices be-
came closer after the event of 9/11. This implies an explicit
change in the behavior of trading activities of the DJIA and
NASDAQ after September 2001. A similar spectrum in the
last half year of 2002 and the whole year of 2003 �Fig. 12�c��
further implies that the scenario persisted in later trading
activities. This was interpreted by faster information trans-
mission and stronger event dependence in stock markets af-
ter 9/11. In other words, two indices became more correlative
due to influences from common factors, such as news reports
and events, systemic risk, macroeconomic announcement,
and federal government policy. Accordingly, investors had
similar trading strategies during the anniversary of 9/11 in
the year 2002 under the influence of anticipation.

It shall be heuristic to compare our method and the ran-
dom matrix method �4–6�. The random matrix method is
based on the concept of cross correlation of stocks, and the
spectrum from market data �4,5� possesses a bulk of continu-

ously distributed eigenvalues, which is similar to random
matrix theory �4,34,35�. The method introduces a cross-
correlation matrix to measure the statistical overlap of the
fluctuations in the returns between pairs of stocks �4,5,36,37�
and then solves the eigenvalues of the random matrix. The
effects of the correlations �4,5,36,37� are manifest in the
eigenvectors of those eigenvalues, and the corresponding
patterns are related to the cooperative behavior in the fluc-
tuations of the stock prices �38–40�. Therefore, the random
matrix method is designated and suitable for the study of
correlative behaviors in a collective system. It can only be
applied to analyses with more than two stocks. In contrast to
the random matrix method, in our method there is no as-
sumption of correlations in the primary time series and the
empirical decomposition of primary time series into IMF’s is
intuitive and straightforward. As shown in the analysis of
this paper, our method can be used for the investigation of
correlation and is also useful for the study of the intrinsic
properties of an individual time series.

Finally, according to the impressive implications dis-
closed by our studies based on the concepts of phase distri-
bution and phase correlation, we expect that our approach is
also useful for statistical analysis of other time series, such as
time series of physiological systems �29� and other social
models �31�. Furthermore, it would also be interesting to test
if our approach can be applied to the study of memory ef-
fects in financial time series �41�.
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